

〇廃棄物調査計画の格子の設定方法について

廃棄物調査計画の格子の設定については、「支障除去のための不法投棄現場等現地調査マニュアル」(産業廃棄物処理事業振興財団)に基づいて概略調査として3,000m²程度になる格子を考え、詳細調査時の格子が30mであることを考慮して、概略調査として60m格子を設定した。

〇調査地点の選定方法について

調査地点の選定は、既往調査で廃棄物調査の目的(廃棄物の性状及び層厚確認)を達成した地点は、その地点を含む60m格子の評価点として判断し、それ以外の既往調査地点を含まない60m格子については新たに調査地点を配置した。

詳細については、以下のとおり表にまとめた。

表1-1 調査地点の選定理由

No.	格子番号	既往調査地点の有無	今回調査の実施の有無
1	A-2	坪堀(F2)にて廃棄物の性状を確認しているが 層厚は確認されていない。	A-2で調査を実施する。
2	A-3	県No.9で地層を確認している。	A-3で調査を実施する。
3	A-4	なし	調査範囲が狭い上に、沈砂池があり調査できないため、A-3の結果で評価する。
4	A-5	なし	調査範囲が狭く、沈砂池があり調査できないため、B-4の結果で評価する。
5	B-2	深掘り調査箇所、県No.8で廃棄物の性状、層 厚を確認している。	地質構造調査として実施するB-2(3-2)の結果で評価する。
6	B-3	H16-2及び坪堀りで廃棄物の性状、層厚を確認している。	地下水調査として実施するB-3(2-1)の結果 で評価する。
7	B-4	なし	地下水調査として実施するB-4(2-2)の結果 で評価する。
8	B-5	なし	調査範囲が狭いため、隣接するB-4(2-2)の 結果で評価する。
9	C-1	なし	C-1で調査を実施する。
10	C-2	KB1とKB2で廃棄物の層厚を確認しており、さ らにKB1では廃棄物の性状を確認している。	調査しない。
11	C-3	坪堀調査(n5-4)で廃棄物の性状のみ確認している。	地質構造調査として実施するC-3(1-3)の結果で評価する。
12	C-4	H16-1、H16-5及び坪掘りで廃棄物の性状、層 厚を確認している。	調査しない。
13	C-5	西側平坦部調査で廃棄物の性状、層厚を確認 している。	調査範囲が狭いため、西側平坦部の掘削調 査結果で評価する。
14	D-2	なし	地質構造調査として実施するD-2(1-2)の結果で評価する。 また、掘削調査も実施する。
15	D-3	県No.5で廃棄物の性状、層厚を確認している。	調査しない。
16	D-4	KB3で廃棄物の性状、層厚を確認している。	掘削調査を実施する。
17	D-5	西側平坦部調査で廃棄物の性状、層厚を確認 している。	調査範囲が狭いため、西側平坦部の掘削調 査結果で評価する。
18	E-2	なし	E-2で調査を実施する。
19	E-3	なし	E-3で調査を実施する。
20	E-4	なし	E-4で調査を実施する。
21	E-5	西側平坦部調査で廃棄物の性状、層厚を確認している。	調査範囲が狭いため、西側平坦部の掘削調査結果で評価する。

1-2. 廃棄物状況調査(案)

(1)目的

廃棄物の性状(有害物質の有無)及びその量(層厚)を確認することを目的として廃棄物調査を実施する。

- *孔内ガス調査及び孔内温度測定は、深度3mごとに実施する。
- *土壌分析(廃棄物土)は、深度1mごとに試料を採取し、①全深度混合したものと②孔内ガス検出深度(複数の検出深度があるときには最大濃度)の試料とその上下1mの試料3深度混合試料で行う。

(2)調査方法

廃棄物調査の主な方法には、①ボーリング調査、②ケーシング調査、③掘削(試掘)調査がある。 それぞれの方法の特徴を表1-2に示す。

表1-2 調査方法の一覧表

⇒ra →⊷ J - ¼ -	特 徵			
調査方法	適応の良い点	適応の良くない点		
	・深度方向に連続性の良い試料採取を行うことが出来る。 ・深度毎に廃棄物の種類、状態(形状、大きさ)、性状を確認できる。	・掘削孔径が小さく(φ100mm程度)、その孔径内の廃棄物しか採取・観察できないであ、形状や大きさを正確に把握出来ない場合がある。		
ボーリング調査	・深い深度(概ね50m程度)まで、容易に調査できる。 ・ボーリング 孔内を利用した流向測定、VOCs等のガス測定、地中温度測定ができ	・廃棄物の種類(ゴムくず、金属くず、建設廃材等)によっては、試料採取が困難な場合がある。		
	る。 ・掘削に際して、粉塵の発生等がない。			
	・掘削孔径が比較的大きく(最大径 φ 1500mm)、廃棄物の種類や状態(形状、大	・掘削孔径が大きく、孔内ガス測定や地中温度測定には適していない。		
ケーシング調査	きさ)を良く把握できる。 ・廃棄物の試料採取は比較的容易に行える。	・試料採取時に試料が乱れるため、廃棄物の性状把握すること(VOCsの測定)には していない。		
		・斜面の近くではケーシングが孔曲がりするなど、場所(地形)によっては適していない。		
	・広い範囲で廃棄物の種類を確認することができる。	・廃棄物の形状が小さく軽いものを含む場合は、粉塵として周囲に飛散する可能性がある。		
掘削(試掘)調査	・広い範囲で廃棄物の状態(形状、大きさ)を確認することができる。	・掘削範囲が広くとれるが、反面VOCs等のガス測定などには適していない。		
	・廃棄物の試料採取が容易に行える。	・深度5m程度までは比較的容易に掘削できるが、それより深く掘削する場合は時間 が長く掛かる。		
		・浸透水等、廃棄物層の中に水が高い時は、排水処理が必要になる。		

(3)調査数量

表1-3 廃棄物調査内容及び数量表

孔番号	廃 棄 物 組成分析	室内試験		孔内ガス	孔内温度	水質分析	廃棄物土 分析
11街 夕		透水試験	物理試験	測定	測定	浸透水	溶出·含有
A-2	1			1	1	1	2
A-3	1	必要に応じて実施。		2	2	1	2
B-2 (3-2)	1			7	7	1	2
B-3 (2-1)	1			2	2	1	2
B-4 (2-2)	1			2	2	1	2
C-1	1			3	3	1	2
C-3 (1-3)	1			7	7	1	2
D-2 (1-2)	1			3	3	1	2
E-2	1			4	4	1	2
E-3	1			4	4	1	2
E-4	1			4	4	1	2
計	11	0	0	39	39	11	22

※()内は、地下水調査及び地質構造調査を兼ねる地点名を示す。

<分析項目>

廃棄物土	溶出量	シス-1,2-ジクロロエチレン、テトラクロロエチレン、トリクロロエチレン、ベンゼン、カドミウム、総水銀、鉛、ヒ素、フッ素、ホウ素、PCB 以上11項目			
	含有量	鉛、ダイオキシン類 以上2項目(必須) なお、カドミウム、総水銀、ヒ素、フッ素、ホウ素 以上5項目は溶出量基準を超過した場合に実施する。			
浸透水		シス-1,2-ジウロロエチレン、テトラクロロエチレン、トリクロロエチレン、ヘンセン、カトミウム、総水銀、鉛、ヒ素、フッ素、ホウ素、ダイオキシン類、pH、COD、SS、電気伝導率、PCB 以上16項目			
	ろ過後 分 析	からりム、総水銀、鉛、ヒ素、ダイオキシン類 以上5項目			

^{*}各分析項目の選定は、過去の分析において一度でも検出されたものを選んだ。

*トリクロロエチレンはこれまで検出されていないが、検出されているシスー1,2ージクロロエチレンの前駆物質(トリクロロエチレン)であるので選定した。

	検知管による測定	VOCs	ヘンセン、シスー1,2ーシウロロコ	ニチレン、トリクロロエチレン、テトラクロロエチレン	以上4項目
孔内ガス		その他	アンモニア、二酸化炭素	以上2項目	
	有害ガス測定器による測定		硫化水素、メタン、酸素	以上3項目	